OPTIMAL CONTROL OF NONLINEAR SYSTEMS PROGRAM
USER'S GUIDE

by

Gregory C. Chow
Ettie H. Butters

Econometric Research Program
Princeton University
Research Memo #209

April 1977
OPTIMAL CONTROL OF NONLINEAR SYSTEMS PROGRAM

USER'S GUIDE

Ettie H. Butters
Gregory C. Chow

Table of Contents

I. Eliminating High Order Lags in the Model

II. Description of the Program

III. Description of Time and Space Saving Procedures

IV. User-Supplied Subroutines
 1. Main Program
 2. MODELS
 3. MODELII

V. Data Requirements
 1. &DIMENS
 2. &OPT
 3. Input Matrices
 4. Construction of IDENTVEC and VARBLVEC

VI. Space Requirements
 1. The Dimension of MAINAR
 2. Region Size

VII. The Use of Two or More Job Runs

VIII. Output and Error Messages

IX. JCL Requirements
The optimal control of nonlinear systems program (OPTNL) computes the optimal control policy and the associated welfare cost using a quadratic loss function for an econometric model whose parameters are assumed to be known. The algorithm used is described in Sections 12.1 and 12.4 of G.C. Chow, *Analysis and Control of Dynamic Economic Systems* (John Wiley and Sons, 1975).

I. Eliminating Second and Higher Order Lags in the Model

Let the model be written as a system of simultaneous structural equations.

\[y_t = \phi(y_{t-1}, y_{t-2}, x_t, x_{t-1}, w_t) + u_t \] \hspace{1cm} (1)

where \(y_t \) = vector of 'ny' endogenous variables
\(x_t \) = vector of 'nx' control variables
\(w_t \) = vector of 'nw' exogenous variables not subject to control
npd = number of time periods in the planning horizon
\(u_t \) = vector of random error terms, and

where \(\phi \) is a vector of possible nonlinear functions.

Since the program does not accept lagged endogenous variables of order higher than the first, the user should eliminate the variables with lags of two or more periods by introducing identities. For example, let there be 50 endogenous variables in the model to begin with. The number of simultaneous equations 'ns' is 50. If the model consists of \(y_{6,t-2} \) an identity \(y_{51,t} = y_{6,t-1} \) should be introduced. This identity permits the user to write \(y_{6,t-2} \) as \(y_{51,t-1} \) and get rid of the second-order lag. If \(y_{6,t-3} \) is also present, another identity \(y_{52,t} = y_{51,t-1} \) can be used, permitting the user to write \(y_{6,t-3} \) as \(y_{52,t-1} \). Let 40 additional identities of this kind be required in our example to eliminate all endogenous variables with
lags of two or more periods. There will then be 90 endogenous variables in the model, to be included in the vector \(y_t \).

If the model consists of control variables lagged two or more periods, more identities and endogenous variables will be required. Let there be \(nx = 4 \) control variables in our example, \(x_{1t} \ldots x_{4t} \). To eliminate the variable \(x_{1,t-2} \) introduce the identity \(y_{91,t} = x_{1,t-1} \) and write \(x_{1,t-2} \) as \(y_{91,t-1} \). Similarly, to eliminate \(x_{1,t-3} \), introduce the identity \(y_{92,t} = y_{91,t-1} \) and write \(x_{1,t-3} \) as \(y_{92,t-1} \). If 10 identities of this type are required, there will be all together 100 variables in the vector \(y_t \).

'ny', the number of endogenous variables in \(y_t \), will be set equal to 100.

The computer program will automatically make up a vector consisting of the 104 elements of \(y_t \) and \(x_t \). This augmented vector will serve as the argument in the welfare function, its last 4 elements in our example being included to serve the possible need to penalize variations in the instruments or control variables. The expanded model takes the form

\[
\begin{align*}
y_{1,t} &= \phi_1 (y_{t-1}, y_{t-1}, x_{t}, x_{t}, w_t) + u_{1,t} \\
\vdots & \quad \vdots \\
y_{50,t} &= \phi_{ns} (y_{t-1}, y_{t-1}, x_{t}, x_{t}, w_t) + u_{50,t} \\
y_{51,t} &= y_{51,t-1} \\
\vdots & \quad \vdots \\
y_{100,t} &= y_{99,t-1} \\
y_{101,t} &= x_{1,t} \\
\vdots & \quad \vdots \\
y_{104,t} &= x_{4,t}
\end{align*}
\]

There are \(ns \) simultaneous structural equations, \(nid \) identities of lagged values, and \(nx \) identities for the control variables; altogether the augmented
y vector has p elements, with p = ny + nx, and ny = ns + nid. \(u_t \) is a random vector with mean zero and covariance matrix \(V \), to be supplied by the user. The program calculates a linear approximation of the model explaining the augmented y vector shown in equation (2)

\[y_t = A_t y_{t-1} + C_t x_t + b_t , \]

from which it derives a feedback control equation

\[x_t = G_t y_{t-1} + g_t \]

so as to minimize the expectation of the welfare loss

\[E W = E \sum_{t=1}^{npd} (y_t - z_t)'K_t(y_t - z_t) , \]

where npd is the number of periods, \(z_t \) is n vector of targets, and

\(K_t = K \cdot EXKCAP^t \) is the weighting matrix. npd, \(z_t \), EXKCAP and K are to be specified by the user.

The model in the form shown in equation (2) is coded in FORTRAN statements in two subroutines provided by the user. The first subroutine, named MODELS, consists of FORTRAN statements of the ns simultaneous structural equations; the second, named MODEL1, consists of FORTRAN statements of the nid identities of the lagged values. The last nx identities of the control variables are not coded by the user, but are 'remembered' by the program. Some knowledge of basic FORTRAN is therefore required by the user. A description of the two usersupplied subroutines is contained in section IV.
II. Description of the Program

The general logic of the program, represented in the flow diagram of Figure 1, is taken directly from section 12.1 of Chow's text. A description for some of the steps follows.

1. Each iteration starts at A of the diagram, and depends on the optimal path computed in the previous iteration. To provide a tentative path of \(y_t \) for the first iteration, the program starts with the given trial values of \(x_t \), \(t=1,\ldots,n \) and solves the nonlinear system using the Gauss-Seidel method which is described in section 6.6 of Chow. For the model of equation (2), let \(y_{it}^{(k)} \) be the values of \(y_{it} \) at the \(k \)th iteration of the Gauss-Seidel process. The iterating process continues until \(y_{it} \) converges

\[
\frac{|y_{it}^{(k+1)} - y_{it}^{(k)}|}{y_{it}^{(k)}} < \varepsilon \quad \text{for} \quad i = 1,\ldots,n.
\]

The method requires the user to supply an initial \(y_0 \) vector, trial \(y_1 \) and \(x_1 \) vectors in period 1 for the first Gauss-Seidel iteration, the maximum number, \(r \), of iterations permitted, and the convergence criterion \(\varepsilon \).

2. Instead of estimating the tentative path by the Gauss-Seidel method, the program can, if so directed by the user, accept a set of \(y_t \) and \(x_t \) from an output device as the tentative path to be used for the first iteration. These \(y_t \) and \(x_t \) are optimal solutions from a previous job, and are being used now to continue the iteration process. At the end of each iteration cycle, the program automatically saves the solutions \(y_t \) and \(x_t \) in an output device, regardless of whether or not \(y_t \) has converged. The purpose is to safeguard against
START (From MAIN) →

Allocation of Storage →

Reading of all input parameters & matrices →

Gauss-Seidel solutions for tentative y_t and x_t →

ITERATION = 1 →

First partials of structural model for all periods $t; B_{1t}, B_{2t}, B_{3t}$ →

$t = npd$ (last period) →

$t < L$?

Yes →

Coefficients of linearized model A_t, C_t, b_t →

No →

OPTNL4 →

OPTNL5 →

Feedback control coefficients G_t, g_t →

Partial sum of welfare loss; H_{t-1}, h_{t-1} if $t > 1$ →

$t = t - 1$ →

OPTNL7 →

OPTNL8 →

Y_t Converged ?

Yes →

PLOTY →

Yes →

GAMMA →

Message; Save optimal path y_t →

Plot of y_t against targets z_t →

Iteration > Limit ?

No →

A →

ITERATION = ITERATION + 1 →

END (To MAIN) →

FIGURE 1. Flow Diagram of Mainline Logic for the Nonlinear Optimum Control Program.
losing all the results of the iterative process before the job is completed such as when the job is terminated because the estimated time is exceeded or the system crashes. What has been saved can then be used for the next iteration in a later job.

3. The program computes the first partial derivatives of ϕ_j numerically. For example, the derivative of ϕ_j with respect to the variable y_{it} is

$$\frac{\partial \phi_j}{\partial y_{it}} = \frac{y_{it}^2 - y_{it}^1}{2dy_i} ,$$

where

$$y_{it}^1 = \phi_j(y_{it}, \ldots, y_{it} + dy_i, \ldots, y_{ny,t}; y_{t-1}; x_{t-1}; x_t; w_t) + u_t$$

$$y_{it}^2 = \phi_j(y_{it}, \ldots, y_{it} - dy_i, \ldots, y_{ny,t}; y_{t-1}; x_{t-1}; x_t; w_t) + u_t$$

$$dy_i = \max(|FDFRAC \cdot y_{it}|, FDMIN) .$$

FDFRAC, FDMIN are provided by the user.
III. Description of Time and Space Saving Procedures

The nonlinear model is constructed in the particular form shown in (2) in order to save both computation time and core space. In that form the matrices B_{1t}, B_{2t}, and B_{3t} of the model's first partial derivatives where, following the notation in Chow,

$$B_{1t}' = \begin{pmatrix} \frac{\partial \phi_1}{\partial y_t} & \cdots & \frac{\partial \phi_p}{\partial y_t} \\ \frac{\partial \phi_1}{\partial y_{t-1}} & \cdots & \frac{\partial \phi_p}{\partial y_{t-1}} \\ \frac{\partial \phi_1}{\partial x_t} & \cdots & \frac{\partial \phi_p}{\partial x_t} \end{pmatrix}$$

$$B_{2t}' = \begin{pmatrix} \frac{\partial \phi_1}{\partial y_t} & \cdots & \frac{\partial \phi_p}{\partial y_t} \\ \frac{\partial \phi_1}{\partial y_{t-1}} & \cdots & \frac{\partial \phi_p}{\partial y_{t-1}} \\ \frac{\partial \phi_1}{\partial x_t} & \cdots & \frac{\partial \phi_p}{\partial x_t} \end{pmatrix}$$

$$B_{3t}' = \begin{pmatrix} \frac{\partial \phi_1}{\partial x_t} & \cdots & \frac{\partial \phi_p}{\partial x_t} \end{pmatrix}$$

take the following form:

$$B_{1t}' = \begin{pmatrix} \frac{\partial \phi_1}{\partial y_t} & \cdots & \frac{\partial \phi_{ns}}{\partial y_t} & 0 & \cdots & 0 \\ \frac{\partial \phi_1}{\partial y_{t-1}} & \cdots & \frac{\partial \phi_{ns}}{\partial y_{t-1}} & d_1 & \cdots & d_{ns} \end{pmatrix}$$

$$B_{2t}' = \begin{pmatrix} \frac{\partial \phi_1}{\partial y_t} & \cdots & \frac{\partial \phi_{ns}}{\partial y_t} & 0 & \cdots & 0 \\ \frac{\partial \phi_1}{\partial y_{t-1}} & \cdots & \frac{\partial \phi_{ns}}{\partial y_{t-1}} & d_1 & \cdots & d_{ns} \end{pmatrix}$$

$$B_{3t}' = \begin{pmatrix} \frac{\partial \phi_1}{\partial x_t} & \cdots & \frac{\partial \phi_{ns}}{\partial x_t} & 0 & \cdots & 0 \end{pmatrix}$$

where d_k is a vector of all zeroes except a single element of one, and where I is an identity submatrix of dimension nx. Since all except the first ns columns have only either zeroes or ones, the program computes the partial derivatives only for the ns structural equations. The location of the element one in each d_k column of B_{2t}' is informed by an input vector named IDENTVEC, where IDENTVEC\(k = j\) indicates that the d_k column has an element one in its jth row, the rest of the column being zero.

Some more time may be saved by the program in computing the partial derivatives for the ns structural equations $\phi_1, \ldots, \phi_{ns}$. If a variable
such as $y_{8,t-1}$ is not in any of the equations $\phi_1', \ldots, \phi_{ns}'$, the program will not waste time in computing the numerical derivative with respect to that variable, provided that it is known in advance that the derivative is zero. Such variables are identified by an input vector named VARBLVEC, supplied by the user. VARBLVEC has $ns + p + nx$ entries, each being either zero or nonzero, corresponding to the following variables:

$$y_{1,t}', \ldots, y_{ns,t}', y_{1,t-1}', \ldots, y_{ny,t-1}', x_{1,t-1}', \ldots, x_{nx,t-1}', x_{1,t}', \ldots, x_{nx,t}'$$

Derivatives of $\phi_1', \ldots, \phi_{ns}'$ with respect to these variables are computed to form the matrices $B_{1t}', B_{2t}', B_{3t}'. If a variable in the above list appears nowhere in the model $\phi_1', \ldots, \phi_{ns}'$, the user enters the value zero in its entry in VARBLVEC; otherwise he or she enters a nonzero value as described in section V.4. The program computes and utilizes the partial derivatives with respect to only those variables with nonzero values in their corresponding entries in VARBLVEC; it automatically treats the remaining columns in $B_{1t}', B_{2t}', B_{3t}'$ as columns of zeroes.

Another procedure used by the program to save time and core space is by "compressing" the linearized approximation of the first ns equations of the model. The user does not need to be concerned with this process, since it is done entirely within the program without the user's intervention. The program rearranges the endogenous variables in y_t^s, the first ns elements of y_t, into two categories which we shall call y_t^a and y_t^b. y_t^b consists of variables that have the following characteristics:

1. they are not targetted in the weighting matrix K;
2. they have no lagged values in the model.

Because of these two characteristics, it is unnecessary to compute the optimal
path for \(y_t^b \). \(y_t^a \) consists of all the remaining variables of \(y_t^s \). In this arrangement the linearized reduced form equations become

\[
\begin{bmatrix}
 y_t^a \\
 y_t^b
\end{bmatrix}
= \begin{bmatrix}
 A_t^a & 0 \\
 A_t^b & 0
\end{bmatrix}
\begin{bmatrix}
 y_{t-1}^a \\
 y_{t-1}^b
\end{bmatrix}
+ \begin{bmatrix}
 c_t^a \\
 c_t^b
\end{bmatrix}
\begin{bmatrix}
 x_t \\
 b_t
\end{bmatrix}
+ \begin{bmatrix}
 b_t^a \\
 b_t^b
\end{bmatrix}
\]

The program computes only \(A_t^a \), \(c_t^a \) and \(b_t^a \) of the "compressed" model; it computes the feedback control coefficients \(G_t \) and \(q_t \) and the welfare loss based on the compressed model, as shown in the flow diagram of Figure 1 where these steps are enclosed by the dotted rectangle.
IV. User-Supplied Subroutines

To run the nonlinear optimal control program three subroutines must be provided by the user. They are the main program, MODELS and MODELI.

1. Main Program

The main program has to be coded by the user in order to allocate the right amount of space for his model. It calls in the optimal control program package and should be coded as follows:

```fortran
DIMENSION MAINAR(m)
REAL*8 DWORD
COMMON/IOBLK/INPUT,LIST,LCNT,NPG,INOUT2,INOUT3,
1 INOUT4,INOUT5
EQUIVALENCE (DWORD,MAINAR(1))
INPUT=5
LIST=6
INOUT2=n2
INOUT3=n3
INOUT4=n4
INOUT5=n5
LCNT=99
NPG=0
NDIM=m
MAINAR(2)=2
MAINAR(1)=NDIM
CALL OPTNL1(MAINAR,NDIM)
STOP
END
```

All capital letters and numbers must be coded as shown; the lower case letters represent variables whose values are to be supplied by the user. The following explains some of the symbols:

- **MAINAR** is an array from which the program assigns all storage space.
- **m** is the dimension of MAINAR; its formula is given in section VI; note that the number m appears in two places: DIMENSION MAINAR(m) and NDIM=m.
- **INPUT=5** is device unit 5, which usually refers to the card-reader, assigned to the input data set INPUT. If the input data is on tape or disk instead of in cards, another unit number should be assigned to INPUT.
- **LIST=6** is device unit 6, which usually refers to the printer, assigned to the output data set LIST. If the printed output is to be first stored on tape or disk, another device unit should be assigned.
the program writes in this data set the optimal solutions y_t and x_t at the end of each iteration; each new set of y_t and x_t replaces the one from the previous iteration. This data set should be kept by the user in case the iteration process is to be continued in a later job.

Three temporary data sets are used by the program to store intermediate results which are to be read by a later part of the program; they are INOUT4, INOUT4 and INOUT5 and they should be deleted at the end of each job.

INOUT3 stores the first partial derivatives B_{1t}, B_{2t} and B_{3t}

INOUT4 stores G_t, g_t for each period t to be used in the feedback control equation $x_t = G_t y_{t-1} + q_t$.

INOUT5 stores $A_t + C_t G_t$ and V_t for each period to be used for the computation of the covariance matrices T_t.

$n2,n3,n4,n5$ are device unit numbers for the temporary data sets assigned by the user; they should be single digit numbers other than 5, 6 and 7.

LCNT=99
NPG=0 initialize line count and page number

NDIM the dimension of the main array MAINAR.

OPTNL1 the mainline logic subroutine of the nonlinear optimal control package.

2. MODELS

As described in section I the nonlinear model is coded in two subroutines MODELS and MODELI. MODELS contains the ns simultaneous equations of the model, and it should be coded as follows:

```
SUBROUTINE MODELS(NY,NX,NW,D,Y,YL,XL,X,W,*)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION D(NY),Y(NY),YL(NY),XL(NX),X(NX),W(NW)
D(1) = \phi_1 (Y, YL, XL, X, W)
D(2) = \phi_2 (Y, YL, XL, X, W)
. . . \{ ns simultaneous equations
. . .
RETURN
END
```
where NY, NX and NW are defined in section V.1, and where

\[D \]
\[
\text{is the array that contains the new values of the endogenous variables resulting from the calculations,}
\]

\[Y \]
\[
\text{is the vector of endogenous variables,}
\]

\[YL \]
\[
\text{is the vector of lagged endogenous variables,}
\]

\[X \]
\[
\text{is the vector of control variables,}
\]

\[XL \]
\[
\text{is the vector of lagged control variables, and}
\]

\[W \]
\[
\text{is the vector of exogenous variables; if there are no exogenous variables in the model, } W \text{ and } NW \text{ should nevertheless be coded as dummy parameters.}
\]

The right-hand side of the equations, represented above by \(\phi_1, \phi_2, \ldots \), are the algebraic FORTRAN statements; for example,

\[
D(1) = Y(5) + DLOG(YL(1) + XL(3)) - 100.*W(4)/Y(6) + .085
\]

The following rules should be observed in coding these statements:

(a) All mathematical functions should be written in double precision since the program is written in double precision.

(b) The order of all lags should be one.

(c) If the lagged endogenous variable \(y_{6,t-3} \) is in the original structural equations, then as illustrated in the example of section I, two variables of lagged values are defined to eliminate this higher order lag: \(y_{51,t} = y_{6,t-1} \) and \(y_{52,t} = y_{51,t-1} \). \(y_{6,t-3} \) should then be coded in the subroutine as \(YL(52) \) which stands for \(y_{52,t-1} \).

(d) If \(y_{6,t-2} \) is in the original structural model, it should be coded as \(YL(51) \) and not as \(Y(52) \). In the right-hand side of the structural equations the subscripts of the \(Y \) vector should be confined to the range from 1 to ns; in our example, the range is 1 to 50.
The '*' as it appears in the last argument of SUBROUTINE MODELS is an
optional facility for non-standard return, and may be used in the following way.
For example, let 10^{-6} be a poor value for the variable D(2), and if it is
reached then the trial solution is considered too far out. If we would like to
terminate the program at this point, we can add the statements below the listing
of all the equations in the SUBROUTINE MODELS:

```

.
.
.
.
IF (D(2).LT.1.D-6) GO TO 31
RETURN
31 RETURN1
END
```

MODELS is called by two subroutines in the nonlinear program: SOLVE, which
solves for y_i by the Gauss-Seidel method, and FP, which takes the first
partial derivatives of ϕ. SOLVE requires that new values of y_i be used
for the calculation of y_j, $j \geq i$, thus it provides one array, Y, for the
two dummy variables D and Y in MODEL. FP, however, solves for each y_i
after a variable on the right hand side of a structural equation is perturbed,
using the old Y vector, thus providing separate arrays for the dummy
variables D and Y in MODELS, and it expects the solution from D. To
accomplish the double purposes required by SOLVE and FP the MODELS subroutine
must be compiled by the FORTRAN G compiler.

3. MODELI

The second subroutine for the nonlinear model, named MODELI, consists
of all the identities of lagged values as shown in equation (2); it should be
coded as follows:
SUBROUTINE MODEL1 (NY, NX, NW, D, Y, YL, XL, X, W, *)
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION D(NY), Y(NY), YL(NY), XL(NX), X(NX), W(NW)
D(ns+1) = YL(i1)
D(ns+2) = YL(i2)
.
.
D(ny) = YL(inid)
RETURN
END

The actual values for ns+1,...,ny and for i1,...,inid will be supplied by the user. For example, using the illustration from section I,

D(51) = YL(6)
D(52) = YL(51)
.
.

All parameters are the same as defined in MODELS, as is the use of the '*' feature. MODEL1 is used by only one subroutine of the program, SOLVE. As was explained earlier for MODELS, MODEL1 should be compiled by the FORTRAN G compiler.
V. Data Requirements

The program accepts data in the sequence represented by the diagram below:

```
&DIMENS
 Parameter Cards
&END

&OPT
 Parameter Cards
&END

Header Card
 Data Cards

Header Card
 Data Cards

......

Input Matrices
```

&DIMENS and &OPT are names for two blocks of parameters to be read in by the NAMELIST feature of FORTRAN. To illustrate the use of this feature, consider the following example, taken from the model discussed in section I:

```
&DIMENS NS=50,NY=100,NX=4
  NW=40,NPD=5
&END
```

All input cards for a NAMELIST block must start at a column to the right of column 1. The first card must start with the name, in this case &DIMENS, followed by the parameters for that list. The parameters are separated by commas; spaces are allowed between parameters, but no space is allowed on either side of the '=' sign. A parameter not included in the input is given its default value by the program, therefore it may not be necessary to list all the parameters for a NAMELIST block. The block ends with an &END card. Note in the example '_' means one or more blanks.

The input matrices are read in blocks, each being preceded by a header card
which has the following format:

cols 1-8: name of the matrix, left justified. The name must be spelled exactly as given in subsection 3 below.

cols 9-40: optional format in FORTRAN convention for the data following this header card. The default format is SF10.4.

cols 41-80: optional comments describing the matrix.

All data matrices except V and KCAP are to be read in row-wise, following the format specified in their respective header cards. Detailed description for each input matrix will be given in subsection 3 below. The following example illustrates an input matrix:

\[
\begin{array}{cccc}
 \text{col. 1} & \text{col. 9} & \text{col. 41} \\
 \text{ZRATE} & (5F5.2/2F5.2) & \text{GROWTH RATE FOR TARGETS} \\
 1.0 & 1.0 & 1.5 & 1.0 & 1.35 \\
 1.7 & 1.0 & \text{} & \text{} & \text{} \\
 1.62 & 1.2 & 1.0 & 1.0 & 1.0 \\
 1.0 & 1.0 & \text{} & \text{} & \text{}
\end{array}
\]

1. &DIMENS

The NAMELIST &DIMENS consists of the following parameters:

\[
\begin{align*}
\text{NS} & = \text{number of structural equations in the model; default } = 1. \\
\text{NY} & = \text{number of endogenous variables of the vector } y_t \text{ in equation (2); i.e., } \text{NY} = \text{NS} + \text{the number of identities of lagged values; default } = 1. \\
\text{NX} & = \text{number of control variables in the vector } x_t \text{ in equation (2); default } = 1. \\
\text{NW} & = \text{number of uncontrollable exogenous variables in the vector } w_t \text{ in (2); default } = 0. \\
\text{NPD} & = \text{number of time periods for the plan; default } = 1.
\end{align*}
\]

2. &OPT

The &OPT list consists of parameters that are options for the program; they are:
OSUP = 0
for full print-out of $A_t, C_t, b_t, G_t, H_t, g_t, h_t$
at every time period. (These symbols are defined in
Chow's book as referenced.)

= 1
for print-out of G_t, H_t, g_t, h_t only at every time
period.

= 2
for print-out of G_t, H_t, g_t, h_t at time period 1
only; all other time periods have no print out.

= 3
same as in OSUP=2 except that the program will also omit
printing H_t and h_t.

GAUSS = 0
will omit the printing of the Gauss-Seidel solution for
y_t used for the first linearization of the model (default
value).

= 1
will print the above Gauss-Seidel solution.

= 2
will print and save the Gauss-Seidel solution and the
program will terminate at that point.

GAMMA = 0
will omit the calculation of the covariance matrices
Γ_t (default value).

= 1
when the optimal solution y_t converges* the program will
calculate the covariance matrices Γ_t of the variables
y_t. The program will not print the entire Γ_t but will
print only those rows of Γ_t that correspond to the
variables targeted in the weighting matrix K.

= n
where $2 \leq n \leq ns+nx$. As in GAMMA=1 the program will
calculate Γ_t when the optimal solution y_t converges*;
the print-out of Γ_t is controlled by the input vector
GAMVAR, which is to be supplied by the user; n indicates
the number of entries in GAMVAR.

PLOT = 0
will plot the optimal solution values of the means of y_t
against target values z_t only for those variables that
have nonzero diagonal weights in the K matrix; the means
of the control variables x_t are also plotted (default
value).

= 1
will plot the means of all the variables of the optimal
solution y_t as well as the control variables x_t against
their targets z_t.

UGZ = T
if the targets z_t are to grow at constant percentage
rates; in this case the user will supply the initial z^0_t, the
ZO vector, and the rate of growth, the ZRATE vector,
and the program will compute $z_t = ZO \cdot ZRATE$.

= F
if the targets z_t for all periods are to be supplied by
the user in the input matrix Z (default value).

* The program will also compute Γ_t when the iterativ limit ITERLL is reached.
OFDIAV = T if the covariance matrix \(V \) of the random vector \(u \) in equation (2) have nonzero off-diagonal elements; in this case the user must supply the lower triangle of the symmetric \(V \).

= F if the off-diagonal elements of \(V \) are zero; only the diagonal elements of \(V \) are required for input (default value).

OFDIAG = T if the \(K \) matrix in the loss function have nonzero off-diagonal elements; in this case the user must supply the lower triangle of the symmetric \(K \) matrix.

= F if the off-diagonal elements of \(K \) are zero; only the diagonal elements of \(K \) are required for input (default value).

EXKCAP = discount factor for modifying the \(K \) matrix for each time period \(t \) according to the formula \(K_t = K \cdot (EXKCAP)^t \), where \(K \) is supplied by the user; default = 1.0.

NROUND = 1 if the tentative path for \(y \) required in the first iteration is to be estimated by the Gauss-Seidel method; this marks the first job run in the iterative process to calculate the optimal path \(y \) which might require more than one job run (default value).

= 2 (or 3, 4, etc.) marks the second (or third, fourth, etc.) job run in the iterative process to find the optimal path \(y \); the solution for \(y \) and \(x \) from the previous job will be read from an output device named INOUT2, to serve as the tentative path for the first iteration of the current run. All other input data remain the same as in the previous job. (See section VII on the use of more than one job run.)

ITERL1 = the maximum number of times the model will be linearized for calculating optimal control path; default = 1. Our method starts with a guess for \(x_1, \ldots, x_{n-1} \), which, by the use of the Gauss-Seidel method, if \(NROUND=1 \), implies a solution for \(y_1, \ldots, y_{n+1} \). Around this tentative path the model is linearized and an optimal control path is obtained for the linearized model. This optimal path becomes the initial guess of \(x_1, \ldots, x_{n-1} \) in the next linearization. \(ITERL1 \) refers to the maximum number of times the model will be linearized.

ITERL2 = the maximum number of iterations allowed for solving the model by Gauss-Seidel; default = 10.

EPS1 = the convergence criterion for optimal policy; default = .001. The condition is:

\[
\left| \frac{y_i^{(k)} - y_i^{(k-1)}}{y_i^{(k-1)}} \right| < EPS1,
\]
for each $i = 1, \ldots, ns$ that corresponds to a nonzero diagonal element of the K matrix, k being the iteration count, the program terminates. The solution y_{it} will be plotted against their targets z_{it}. If the convergence criterion is not met another iteration will be performed.

$\frac{y_{i}^{(k+1)} - y_{i}^{(k)}}{y_{i}^{(k)}} \leq \text{EPS2}$

for $i = 1, \ldots, ny$, k being the iteration count.

$\text{FDFRAC} =$

parameter for computing step sizes in evaluating the first derivatives; the step size for the variable y_{it} is $dy_{i} = \max(|\text{FDFRAC} \cdot y_{it}^{(k)}|, \text{FDMIN})$; default $= .001$.

$\text{FDMIN} =$

minimum step size allowed in the above formula; default $= .001$.

$\text{DAMP} =$

a factor used to dampen the changes in successive iterations of the Gauss-Seidel solution.

$$y_{t}^{(k+1)} = y_{t}^{(k)} + \text{DAMP} \cdot (y_{t}^{(k+1)} - y_{t}^{(k)})$$

where $y_{t}^{(k+1)}$ = solution obtained at iteration $k+1$, and $y_{t}^{(k+1)}$ = solution actually used to compute y_{t} in the $(k+1)$th iteration.

'DAMP' may be made small if solution tends to oscillate from iteration to iteration; default $= 1.0$.

$\text{DAMPX} =$

a factor used to dampen the changes in successive iterations of the control variables x_{t}.

$$x_{t}^{(k+1)} = x_{t}^{(k)} + \text{DAMPX} \cdot (x_{t}^{(k+1)} - x_{t}^{(k)})$$

where $x_{t}^{(k+1)}$ = solution obtained at iteration $k+1$, and $x_{t}^{(k+1)}$ = solution actually used to compute the optimal path y_{t} for the $(k+1)$th iteration.

'DAMPX' may be made small if the optimal path y_{t} tends to oscillate from iteration to iteration; default $= 1.0$.
3. Input Matrices

The input matrices described below must appear in the input deck in the order given; the name of the matrix must be spelled correctly in the header card. IDENTVEC, VARBLVEC and GAMVAR are the only vectors whose elements are integers; all other vectors have floating-point numbers as elements. The dimension p is defined as $p = ny + nx$.

<table>
<thead>
<tr>
<th>NAME</th>
<th>DIMENSION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTVEC</td>
<td>(nid)</td>
<td>A vector where elements are the variables that appear in the identities of lagged values in the model; its construction is described in subsection 4 below.</td>
</tr>
<tr>
<td>VARBLVEC</td>
<td>(ns+p+nx)</td>
<td>A vector that identifies those variables with respect to which the first partial derivatives are computed by the program; its construction is described in subsection 4 below.</td>
</tr>
</tbody>
</table>
| V | (ns) if OFDIAV=F
 | (ns(ns+1)/2) if OFDIAV=T
 | ns | Variance-covariance matrix of u_t in equation (2); if OFDIAV=F, only the diagonal of V is entered in the input; if OFDIAV=T, the lower triangle of V is entered by columns, starting with the left-most column of ns elements; each succeeding column has one less element than the previous one. |
| KCAP | (p) if OFDIAV=F
<pre><code> | (p(p+1)/2) if OFDIAV=T | The weighting matrix K in the welfare function; if OFDIAV=F, only the diagonal of K is entered as input; if OFDIAV=T, the lower triangle is entered by columns, as described for V above. |
</code></pre>
<p>| ZO | (p) | Initial values of targets for y_t and x_t, required only if UGZ=T. |
| ZRATE | (p) | Growth rate for targets which the program will compute based on ZO and ZRATE; required only if UGZ=T. |</p>
<table>
<thead>
<tr>
<th>NAME</th>
<th>DIMENSION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>(npd,p)</td>
<td>Targets to be read in row-wise for all periods; required only if UGZ=F.</td>
</tr>
<tr>
<td>Y0</td>
<td>(p)</td>
<td>Initial values for the vectors y_t and x_t in period $t = 0$.</td>
</tr>
<tr>
<td>W</td>
<td>(npd,nw)</td>
<td>Exogenous variables for all periods, to be read in row-wise; required only if nw > 0.</td>
</tr>
<tr>
<td>X</td>
<td>(npd,nx)</td>
<td>A tentative policy for all periods, to be read in row-wise. This policy will be used to compute the tentative path y_t by Gauss-Seidel.</td>
</tr>
<tr>
<td>Y</td>
<td>(ny)</td>
<td>A trial solution of the y vector for the first period, to be used in the first iteration of the Gauss-Seidel solution for period 1; this vector may take the same value as Y_0.</td>
</tr>
<tr>
<td>GAMVAR</td>
<td>(n)</td>
<td>A vector whose elements are the row/column numbers of Γ to be printed; required only if GAMMA=n, where $2 \leq n \leq ns+nx$ and is the dimension of GAMVAR.</td>
</tr>
</tbody>
</table>

4. **Construction of IDENTVEC and VARBLVEC**

The use of IDENTVEC and VARBLVEC is discussed in section IV. Before constructing IDENTVEC, the user must first eliminate all higher order lags in the nonlinear model by adding identities of lagged values to the model, as discussed in section I. To illustrate, we will use the example from section I. In this example the model has 50 simultaneous structural equations, 50 identities of lagged values, and 4 control variables; that is, $ns=50$, $nid=50$, $ny=ns+nid = 100$, and $nx=4$, and the identities of lagged values are:
\[y_{51} = y_{6,t-1} \quad 6 \]
\[y_{52} = y_{51,t-1} \quad 51 \]
\[y_{53} = y_{52,t-1} \quad 52 \]
\[\vdots \]
\[y_{91} = x_{1,t-1} \quad 101 \]
\[y_{92} = y_{91,t-1} \quad 91 \]
\[y_{93} = x_{3,t-1} \quad 103 \]
\[\vdots \]
\[y_{100} = y_{99,t-1} \quad 99 \]

The numbers listed on the right are the variable numbers that will appear in IDENTVEC: for \(y_{k,t-1} \) in an identity, the number listed is simply \(k \); for \(x_{k,t-1} \), the number listed is \(ny+k \). The IDENTVEC for this model will look like this:

<table>
<thead>
<tr>
<th>col. 1</th>
<th>col. 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>IDENTVEC</td>
</tr>
<tr>
<td>Card</td>
<td>Data</td>
</tr>
<tr>
<td>Card 1</td>
<td>6</td>
</tr>
<tr>
<td>Data</td>
<td>Card 3</td>
</tr>
</tbody>
</table>

Note that the data entered are 'right-justified' because the format is I, and that the dimension of IDENTVEC is \(ny + d \), the number of identities of lagged values.

The construction of VARBLVEC is a bit more involved, but the user should not have too much trouble if the steps listed below are followed:

(a) List the integers from 1 to \(ns + p + ns \). In our example from Section I,
the numbers would be from 1 to 158.

(b) Above this list of numbers write the following variables in order, with one variable corresponding to one number:

\[y_{1,t}, \ldots, y_{n_s,t} \]
\[y_{1,t-1}, \ldots, y_{n_y,t-1}, x_{1,t-1}, \ldots, x_{n_x,t-1} \]
\[x_{1,t}, \ldots, x_{n_x,t} \]

In our example, we would have:

\[
\begin{align*}
Y_1t & \quad Y_2t & \quad \cdots & \quad Y_{50}t \\
1 & \quad 2 & \quad \cdots & \quad 50 \\
Y_{1}t-1 & \quad Y_{2}t-1 & \quad \cdots & \quad Y_{100}t-1 & \quad x_{1,t-1} & \quad \cdots & \quad x_{4,t-1} \\
51 & \quad 52 & \quad \cdots & \quad 150 & \quad 151 & \quad \cdots & \quad 154 \\
x_{1t} & \quad \cdots & \quad x_{4t} \\
155 & \quad \cdots & \quad 158
\end{align*}
\]

(c) Look through the right-hand side of each structural equation of the model. Whenever one of the variables listed in (b) appears, circle the number underneath the variable in the list. In our example, we might obtain

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
51 & 52 & 53 & \vdots \\
155 & 156 & 157 & 158
\end{array}
\]

Any number in the list not circled means the variable above it appears nowhere in the right-hand side of the structural equations; any variable of the list in (b), that appears somewhere in the right-hand side
of the structural equations should have its corresponding number circled. In our example, y_{3t}, y_{50t}, $y_{1,t-1}$, $x_{2,t}$ are some of the variables not in the structural model.

(d) VARBLVEC is simply the list of integers from (b), with the uncircled numbers replaced by 0; thus VARBLVEC has $ns+p+nx$ entries. In our example, VARBLVEC would look like this:

<table>
<thead>
<tr>
<th></th>
<th>col. 1</th>
<th>col. 9</th>
<th>col. 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header Card</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Card 1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Data Card 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Card 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Card 5</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Data Card 6</td>
<td>0</td>
<td>52</td>
<td>53</td>
</tr>
<tr>
<td>Data Card 16</td>
<td></td>
<td>155</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>157</td>
<td>158</td>
</tr>
</tbody>
</table>

It is vitally important that IDENTVEC and VARBLVEC be constructed correctly since the program depends on them to calculate the optimal solution y_t. If the econometric model is not very large or the saving of computer space and time is not essential, the user may simply fill in the vector VARBLVEC with all nonzero elements.
VI. Space Requirements

1. The Dimension of MAINAR

The program parcels out all its work space from the array MAINAR.

Since the amount of work space depends entirely on the size of the model and the number of periods in the plan, the dimension of MAINAR is provided by the user in the main program. Following is a formula for calculating the dimension, NDIM, of MAINAR, assuming OPDIAV=F and OPDIAG=F:

\[
NDIM = 100 + 2 \times \left\{ 5p + 2ns + ns(p+nx) + nx + nx^2 + nid \right. \\
\left. + p^*(nx+1+nxp) + 2p^{*2} - p^*(p^*-1) \\
+ npd(3p+nw) + 1 \right\}
\]

where $p = ny + nx = ns + nid + nx$

$ns =$ number of structural equations in MODELS

$nx =$ number of control variables

$nid =$ number of identities in MODER

$npd =$ number of periods

$nw =$ number of exogenous variables

$nxp =$ \text{max}(2,nx)-1

p^* = dimension of the 'compressed' model which is discussed in section III

= number of entries in TABL3, as printed.

The user may find it difficult to determine p^*. p^* should take the same value as p in the very first time the model is run, which will produce a print-out of TABL3; the number of entries of TABL3 (always $\leq p$) can then be used for the value of p^* in the later runs of the model.

Add to the expression within the brackets the following:

- \((ns^2-ns)/2 \) if OPDIAV=T, and
- \((p^2-p)/2 \) if OPDIAG=T.
2. **Region Size**

The region (or core) size needed to execute the optimal control program is determined by the following factors:

(a) size of the optimal control program \(\geq 146 \text{K} \);
(b) size of I/O buffers \(\geq 16 \text{K} \);
(c) size of MODELS and MODELI subroutines = \(\text{MOD('bytes')} \);
(d) dimension of MAINAR = \(\text{NDIM('words')} \)

The formula to obtain the value for the REG parameter is

\[
\text{REG} = \left[\frac{4 \times \text{NDIM} + \text{MOD}}{1024} + 146 + 16 \right] k
\]

To obtain \(\text{MOD} \) in 'bytes,' the user should first compile MODELS and MODELI (to debug coding errors as well as to determine the size), and the size of each subroutine can be found at the end of its compilation listing, printed after the words 'PROGRAM SIZE.'
VII. The Use of Two or More Job Runs.

Figure 2 is a schematic diagram showing the input and output of the optimal control program and the relationship between two 'continuous' job runs. Recall from section II that if a model requires a large number of iterations in the optimal control calculation before the optimal solution path \(y_t \) is reached, the user may break up the iterating process into two or more job runs. At the end of the first job run, where \(R = 1 \) and assuming \(I = 3 \), the program writes the solution path \(y_t \) and \(x_t \) obtained from the third iteration onto the data set INOUT2. If the printed output from this job shows that the solution path \(y_t \) obtained from the third iteration did not converge, the user may then 'continue' the iterating process by feeding into the program the same input deck with one change -- setting \(R = 2 \). The program will read \(y_t \) and \(x_t \) from INOUT2 and use them as the tentative path for the fourth iteration. A third or a fourth job run may be required before the solution path \(y_t \) will converge. One may of course obtain the optimal solution \(y_t \) in one job run by setting \(I = \) (and the estimated computer time) to a high value, because the program will not terminate until the solution path converges or until the iteration limit is reached (see Figure 1). However, the user is recommended to break up a possibly long iterating process into several job runs, each with a small iteration limit \(I \). The advantage is that the user may examine the printed output at the end of each 'small' job, to determine if any parameter, such as \(D \), should be changed to speed up the convergence or to generate more efficient runs; whereas by giving a high value to \(I \) the user may look at a printed output only after a lot of computer time has been used, and possibly wasted.

During the first few times that a model is run, many of the input parameters such as \(I \), \(E_1 \), \(E_2 \) and \(D \) are probably given values on the
FIGURE 2. Job Diagram Showing Two Job Runs

1ST JOB

Input Data (NROUND=1) → OPTIMAL CONTROL PROGRAM (including user-supplied subroutines) → Printed Output

INOUT3, INOUT4, INOUT5

INOUT2 (Solution path y^f and x^f)

2ND JOB

Input Data (NROUND=2) → OPTIMAL CONTROL PROGRAM (including user-supplied subroutines) → Printed Output

INOUT2 (Solution path y^f and x^f)

INOUT3, INOUT4, INOUT5
basis of trial and error. It then makes sense to keep these runs 'small' in order to determine what better values to give these parameters without wasting too much computer time. Moreover, the coding of MODELS and MODEL1 and the construction of the vectors IDENTVEC and VARBLVEC are subject to errors that can be very easily committed. By setting GAUSS=2, the user terminates the program immediately after the Gauss-Seidel solution for y_t is obtained, printed, and saved on INOUT2, and he/she may then decide what might be 'wrong' with the model subroutines or with the input data. A good set of Gauss-Seidel solutions can be used as the tentative path for the first iteration in a later run, with NROUND=2. By running 'small' jobs one does not lose except possible a small amount of labor.
VIII. Output and Error Messages

The program prints the following on SYSOUT=A for each job:

(1) A list of the &DIMENS and &OPT NAMELIST options, including the
default values if they have not been overridden.

(2) All the input matrices in the order they are read in.

(3) If GAUSS=1 or 2, the values of the Gauss-Seidel solution for \(y_t \) used
for the first linearization of the model.

(4) The \(A, b, C, G, g, h, H \) matrices, starting with the last period.
Their frequency of print-out from period to periods depends on the
value of the OSUP parameter (see section V.2).

(5) The values of the optimal solution \(y_t \).

(6) Total welfare cost and its deterministic and stochastic components.

(7) If the convergence criterion EPS1 is met before the number of
iterations becomes greater than ITERL1, a plot of the values of the
optimal solution \(y_t \) against the target values \(z_t \). Whether all of
the \(y_t \) variables or only those that have nonzero weights in the
diagonal of the \(K \) matrix are plotted depends on the value of the
PLOT parameter (see section V.2). The control variables \(x_t \) are
always plotted against their targets.

(8) TABL1 and TABL3. The only useful information these two tables give to
the user is the number of entries in TABL3, which should be used as
the value for \(p^* \).

(9) The \(\Gamma_t \) matrices if GAMMA > 0. If GAMMA=1, the rows of \(\Gamma_t \)
corresponding to those elements targetted in \(K \) are printed; if
GAMMA > 2, the input vector GAMVAR controls the printing of \(\Gamma_t \).

The following is a list of messages that may be printed in SYSOUT=A:

"PROGRAM TERMINATING BECAUSE GAUSS-SEIDEL FAILED TO CONVERGE FOR VARIABLE I,"
PERIOD T, IN K ITERATIONS" -- In calculating the Gauss-Seidel solution for \(y_t \), if any variable \(y_{i,t} \) does not converge after \(\text{ITERL2} \) iterations, this message appears and the program terminates with a condition code of 29.

"PROGRAM TERMINATING BECAUSE OPTIMAL SOLUTION FAILED TO CONVERGE IN K ITERATIONS, ROUND NO. N" -- If the optimal solution \(y_t \) does not converge after \(\text{ITERL1} \) iterations, this message appears and the program terminates with a condition code of 29. In addition, the optimal solution \(y_t \) and \(x_t \) are saved on the output device assigned by \text{INOUT2} \) of the main program (see section V.2).

"STORAGE ALLOCATION TO THIS POINT=XXXX WORDS OUT OF YYYY (ZZK UNUSED)" -- This message appears throughout the printed output, the user may reduce the value of \text{NDIM} \) in the main program accordingly.

"***INSUFFICIENT MEMORY AREA TO ALLOCATE WORK ARRAYS, XXXX WORDS ALLOCATED TO STORAGE BY MAIN PROGRAM, YYYY WORDS REQUIRED SO FAR, INCLUDING THE FOLLOWING ZZZZ WORDS CURRENTLY REQUESTED AT THE POINT INDICATED BELOW" -- A trace table follows this message showing the subroutine that led to it. The program will continue and allocates more space when required but will eventually terminate after messages like the one following are printed.

"STORAGE ALLOCATION TO THIS POINT=XXXX WORDS OUT OF YYYY (ZZK REQUIRED)" -- When several messages of this type appear before the program terminates, the user should set \text{NDIM} \) in the main program equal to the greatest value of \text{XXXX} in these messages for the next job.

"LOOKING FOR 'AAAA' DATA, FOUND THE FOLLOWING: - - -"

"LOOKING FOR 'AAAA' DATA, FOUND END-OF-FILE"
"END-OF-FILE WHILE READING DATA FOR 'AAAA'

- These messages appear when the user fails to supply enough data for the matrix named AAAA or when the entire matrix has been omitted from the input deck. The program terminates with a condition code of 130, 131, or 132.
IX. JCL Requirements

The JCL given in this section applies only to the IBM 360 or 370 computers. Users of other computers must make up their own JCL to run the program and to assign device units for the four sequential data sets used by the program, INOUT2, INOUT3, INOUT4, and INOUT5; these data sets are described in section IV.

Suppose the nonlinear optimal control program (excluding the three user-supplied subroutines) has been compiled and linked-edited into a load module named OPTCN as a member of a catalogued partitioned data set named OPTLIB, then the following JCL may be used to compile and link-edit the user-supplied subroutines, link them with OPTCN and execute the program:

```fortran
//_EXEC_FOGCGLG
//FORT.SYSIN_DD_*

[Main Program]
MODELS
MODEL1

//LKED.SYSLIB_DD_DSN=OPTLIB,DISP=SHR
/
DD_DSN=SYS1.FORTLIB,DISP=SHR
//LKED.SYSIN_DD_* 
_INCLUDE_SYSLIB(OPTCN)
_ENTRY_MAIN
//GO.FTON2F001_DD_DSN=INOUT2,DISP=(NEW,KEEP)
//UNIT=xxxx,VOL=SER=nnnnnnn,
//DCB=(RECFM=VS,BLKSIZE=1608),
//SPACE=(CYL,(2,1))
//GO.FTON3F001_DDUNIT=xxxx,VOL=SER=nnnnnn,
//DCB=(RECFM=VS,BLKSIZE=1608),
//SPACE=(CYL,(5,4))
//GO.FTON4F001_DDUNIT=xxxx,VOL=SER=nnnnnn,
//DCB=(RECFM=VS,BLKSIZE=1608),
//SPACE=(CYL,(2,1))
//GO.FTON5F001_DDUNIT=xxxx,VOL=SER=nnnnnn,
//DCB=(RECFM=VS,BLKSIZE=1608),
//SPACE=(CYL,(5,4))
//GO.SYSIN_DD_*

[Input data]
//
```

Of the four disk data sets, only one, FTON2F001, is a non-temporary data set;
in this data set the program stores the solution path y_t from each job run. Disp=(NEW,KEEP) is used for the first job run with NROUND=1, and it should be replaced with Disp=OLD in the jobs with NROUND>2.

The digits n2, n3, n4 and n5 in the ddnames should correspond to the same numbers in the main program provided by the user, where INOUT2=n2, INOUT3=n3, INOUT4=n4 and INOUT5=n5. (See Section IV.1). All four data sets are created by unformatted WRITE statements; therefore they must have RECFM=V or VS. Their SPACE parameters may take different values depending on the model. Tape units may replace disk units for these data sets. If GAMMA=0, the last DD statement, with ddbname FTON5F001, can be eliminated, since no intermediate output associated with computing the T_t matrices will be written by the program.

The user might wish to compile the user-supplied model subroutines separately and save the load modules in the same partitioned data set as the one containing the optimal control program (OPTLIB in our JCL example). Suppose MODELS and MODELI are link-edited together as a member named MODELA in OPTLIB, then the following changes should be made in the JCL given above:

1. Delete the MODELS and MODELI source statements that had been placed after the //FORT.SYSIN_DD * card.

2. Replace the INCLUDE card with _INCLUDE_SYSLIB(OPTCN,MODELA).